

自然・社会はネットワーク

多くの要素からなるシステムの性質

- ○連続体と考えて偏微分方程式を作る
 - 要素の繋がり方を無視
- ○正規格子に要素を並べる
 - 要素ごとに隣接する要素数が一定
 - 一様なシステム
 - 情報伝達が遅い
- ランダムグラフに要素を並べる
 - 一様なシステム
 - 情報伝達が速すぎる
- o 要素間の関係が重要な働きをしている場合
 - 要素間の関係の非一様性
 - 時間の遅れ

自然・社会はネットワーク

- 多数の要素の繋がりをネットワークとして捉える
 - インターネット
 - Webページのリンク
 - 知人の繋がり
 - 映画俳優の共演関係
 - 論文の共著者の関係
 - 食物連鎖
 - タンパク質の反応連鎖
 - 電力供給網
- ○共通の性質はあるのだろうか

例

- o インターネット: http://www.opte.org/maps/
- o 代謝:
 http://capsid.msu.montana.edu/douglasgroup/index.php/complex-chemical-networks/17-metabolic-networks.html
- 全米電力ネットワーク:
 http://www.isa.org/InTechTemplate.cfm?Section=
 Features3&template=/ContentManagement/ContentDisplay.cfm&ContentID=75580
- o 食物連鎖: http://www.nceas.ucsb.edu/featured/martinez

ネットワークの科学

- システムをネットワークとして捉える
 - 要素間のつながりに注目
- ・新しい分野
 - 応用:
 - 生態学、分子生物学、社会学、経済学
 - 基礎:
 - 数学、計算機科学、物理学

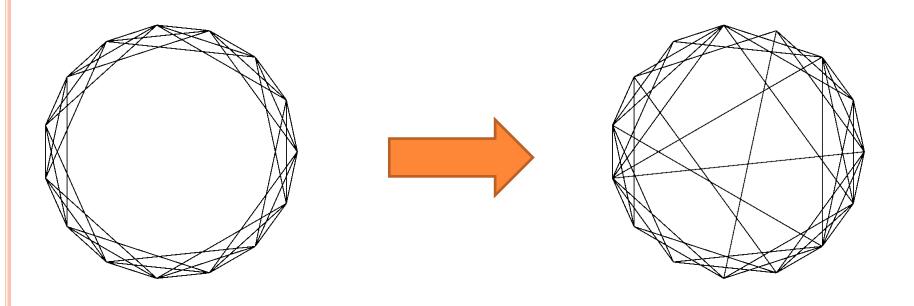
「複雑ネットワーク」共通の性質がある

- ○要素間の距離が短い
 - Small world
 - Six degree
- ○べき則
 - Fat tail
 - 一人勝ち
 - 富者はより富み、貧者はより貧しく

MILGRAMの実験

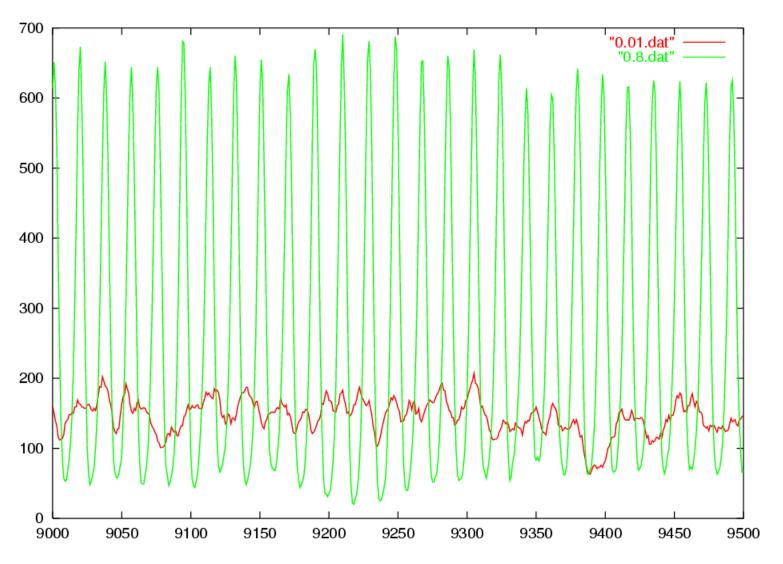
- 1967年に実施
- 手紙を目的の人Aまで届ける
 - 直接、Aを知らない場合、親しい人(ファーストネームで呼ぶような人)で、Aに近いと思われる人に送る
- 1/3 程度の手紙が到達
 - 平均のホップ数は5.5
- o Small world性を示している?
- ○いろいろと問題は指摘されている
 - サンプルの偏り
 - 追試験

KEVIN BACON ゲーム


・映画の共演関係

- http://oracleofbacon.org
- http://www.imdb.com
- http://blog.globalpatentsolutions.com/bid/26875/S ix-Degrees-of-Kevin-Bacon-the-inventor

俳優の氏名	Bacon Number
Julia Roberts	1
Marcello Mastroianni	2
Audrey Hepburn	2
高倉 健	2
Jean Reno	2
Keanu Reeves	2
Johnny Depp	2
木村拓哉	2


WATTS-STROGATZ SMALL WORLD

○正規格子+ランダムな近道

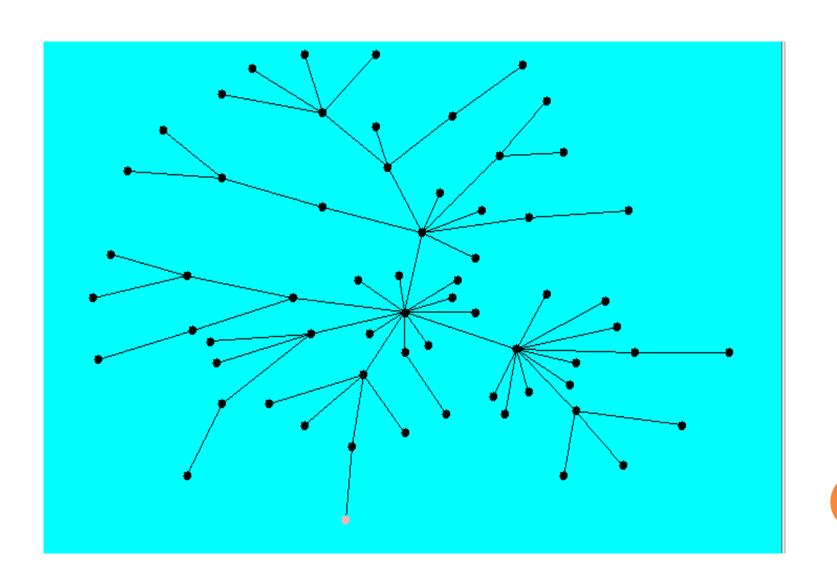
平均距離が急速に減少

$$N = 10^4, k = 3, \tau_I = 4, \tau_R = 9$$

伝染病モデル 近道を使って病気が活動

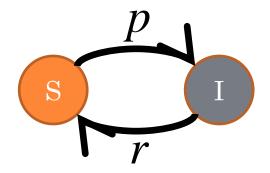
SCALE-FREE ネットワーク

○ 頂点の次数の分布がべき則

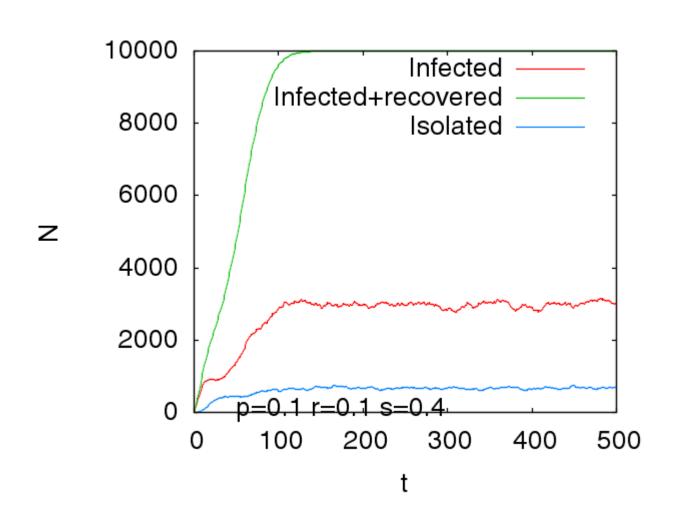

$$P(k) \sim k^{-\gamma}$$

- Web $\sim \mathcal{V}$ $\gamma_{\rm in} \sim 2.1$, $\gamma_{\rm out} \sim 2.7$
 - http://www.nature.com/nature/journal/v401/n6749/ful 1/401130a0.html
- インターネット γ~2.2
- o 論文引用(Phys. Rev. D) γ~2.6

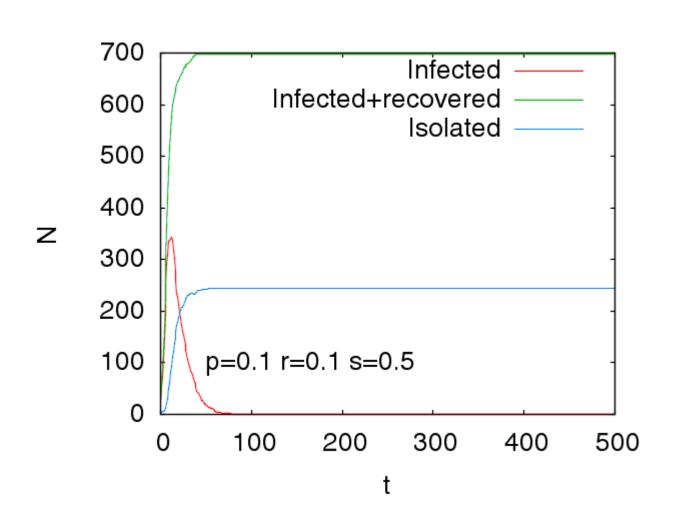
BARABÁSI-ALBERTモデル


- Preferential attachment
 - 次数の高い頂点ほど、新しいリンクを集める
- 各時刻で新しい頂点が発生する
- 新しい頂点は、既存の頂点にm本のリンクを作る
 - リンク先は、直前の時刻の次数に比例した確率で選ばれる

$$P(k) \sim k^{-3}$$

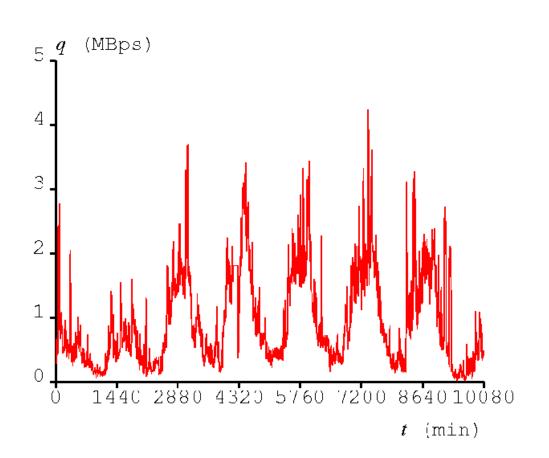


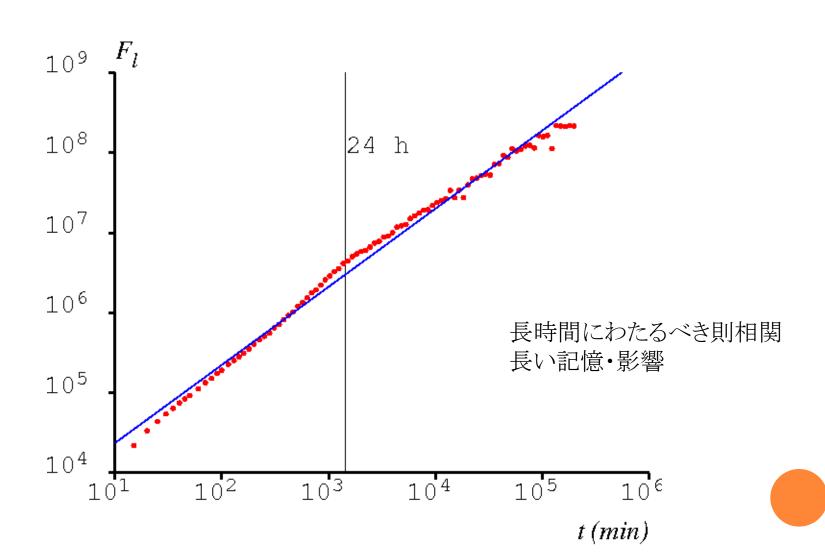
SCALE-FREE NETWORK上の伝染病モデル


- ○各頂点には「個体」が居る
- 各個体の状態はS(健康)またはI(病気)
- 状態Sの個体に状態Iの個体が隣接している場合
 - 確率pで病気に係る
- 状態Iの個体は、確率 rで治り、状態Sに戻る

パンデミック状態

隔離を適切に実施すると




- Scale-free ネットワークでは
 - 伝染病への閾値がない→必ず、全体に広がってしまう。
 - 伝染病への広がりを抑えるには、ネットワークの構造を変える
 - 適切にワクチン接種で、対抗する
- ネットワークの脆弱性・冗長性
 - ランダムな攻撃には強い
 - 次数の大きな頂点を狙った攻撃に弱い

ネットワーク上の流れ

- ○高速道路の車の流れ
 - その場所の性質で決まるもの
 - 高速道路網の性質を反映しているもの
- ○インターネットの情報の流れ

インターネット上のパケット流

良くわかっていない

- パケット流に現れる 1/f 的ゆらぎ
 - ネットワークの構造に由来するのか
 - インターネットが持っている様々な機構によるのか
- 人間の活動が 1/f 的なのか
 - 仕事が溜まる
 - ある仕事の遅れが他の仕事の遅れを誘発