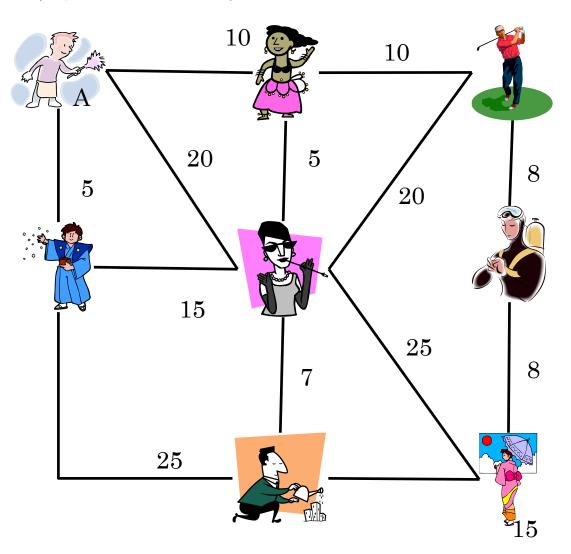
最小木問題 MINIMUM TREE PROBLEM

ネットワーク(NETWORKS)

- 弧に長さ、重み、費用などの属性のあるグラフ
 - 都市とそれを結ぶ交通
 - ・都市間の道路距離
 - ◦都市間の鉄道の運賃
 - ○都市間の空路の最大輸送可能人数
 - コンピュータとネットワーク:帯域
 - 作業工程:所用時間、遅れ

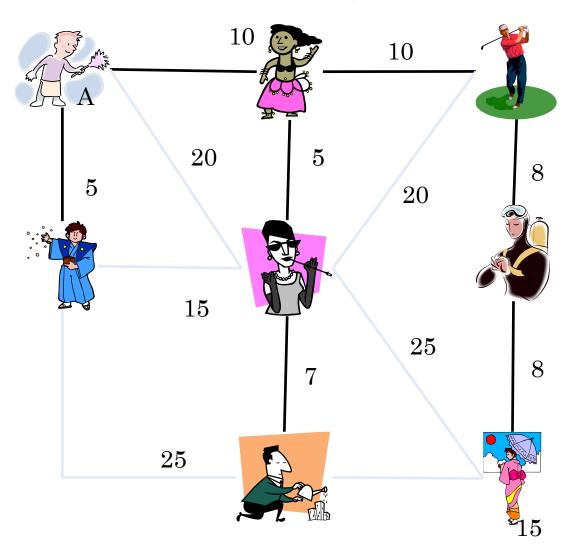
例:最安の連絡経路



Aから全員に最も安く連絡する経路 総経費を考える

経路の経費が 定義されている

例:最安の連絡経路:解



最小木問題(MINIMUM TREE PROBLEM)

- 連結無向グラフ*G*=(*V*,*A*)
 - ・弧に向きが無い
- 重み関数 w: A→R
 - 各弧に実数が対応:重み、距離、etc.
 - 弧の重みは正 $\forall a: w(a) > 0$
- \circ G の極大木 $T \subseteq A$
 - 重みが最小になる極大木Tを見付ける

$$\min_{T} w(T)$$
$$w(T) = \sum_{a \in T} w(a)$$

最小木問題の応用

- ○油井(ゆせい)から精油所へパイプラインを引く
 - 最短(経費の最も安い)のパイプラインで一カ所に原油を集める
- 最小のコストでコンピュータを繋ぐ
- 通信コストを最小にして事業所を繋ぐ

二つのアプローチ

- o Kruskal法 (貪欲法、Greedy法)
 - 重み最小の弧を順に選ぶ
 - 構成途中は木になっていない(部分木の集合)
 - 閉路ができないように制限しながら弧を選択する

o Jarník-Prim法

- 始点から開始して、連結した頂点の数を増やす。
- 構成途中でも木になっている

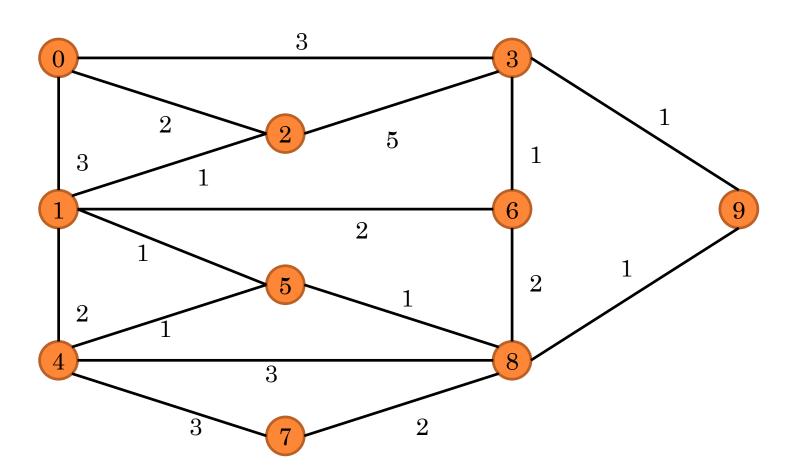
KRUSKAL法 (貪欲法、GREEDY法)

- ○重み最小の弧を順に選ぶ
- 構成途中は木になっていない(部分木の集合)
- 閉路ができないように制限しながら弧を選択する

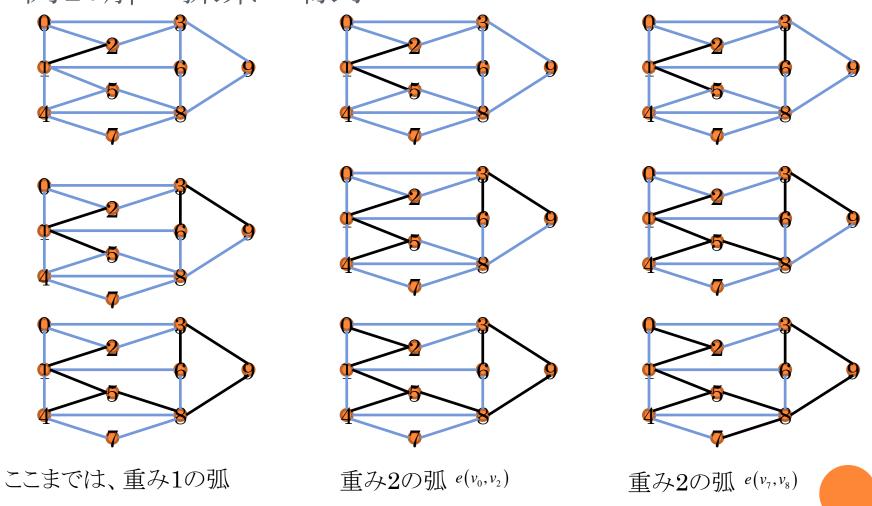
貪欲アルゴリズム (GREEDY ALGORITHM, KRUSKAL ALGORITHM)

```
T = \emptyset
H:G の弧の重みに関するヒープ
\mathbf{while}(T は G の極大木ではない) {
     a = H.poll()ヒープから最小要素を取得
     a_{\text{new}} = \text{null}
    while (a_{new} == null)
         if (T \cup \{a\}) は閉路を持たない) {
              a_{\text{new}} = a
         }else{
              a = H.poll()
    T = T \cup \{a_{\text{new}}\}
```

例1

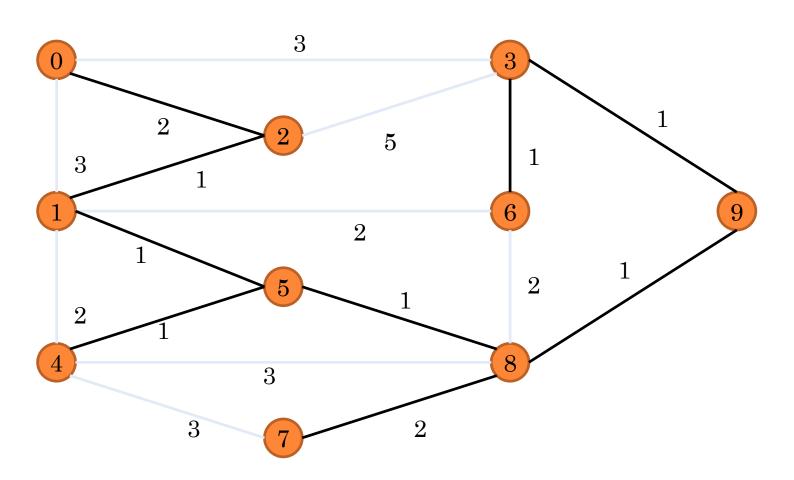


例1:解の探索の様子

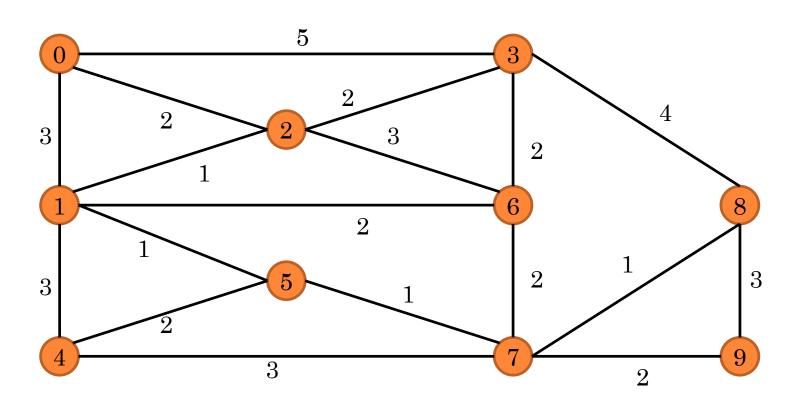


 $e(v_1,v_6)$ を選択すると閉路ができる

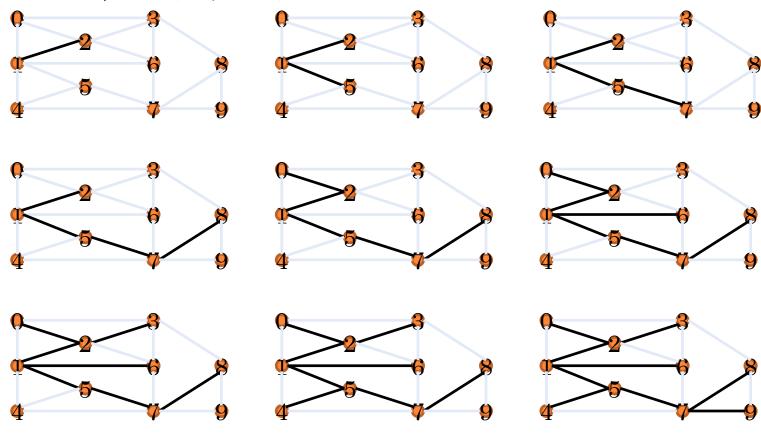
例1:結果

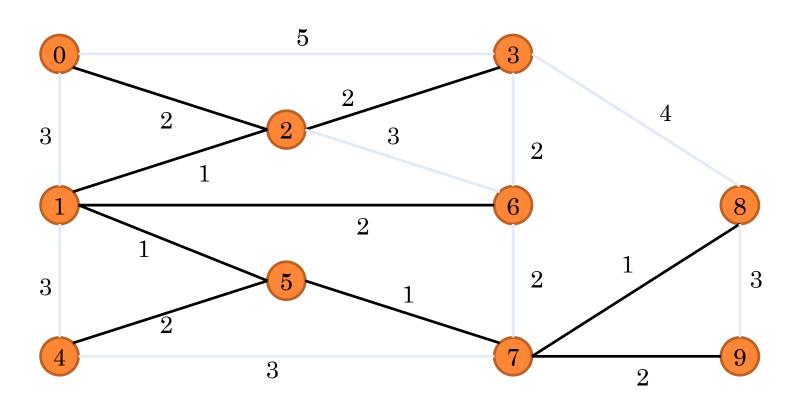


例2



例2:解の探索の様子





貪欲アルゴリズムが正しい理由

○次の定理を証明すれば良い

「貪欲アルゴリズム実行中で得られるTは、弧数|T|を持ち、サーキットを含まない弧集合のうちで、その重みが最小である。」

• 要するに、アルゴリズムの各段階で最小の重みのグラフであることを示す。

○ 証明では、上記を性質(*)と呼ぶことにする。

数学的帰納法による証明

- $T = \emptyset$ の時、自明
- 操作をi回行って、次の弧を選択する直前にある弧集合T が性質(*)を満たしているとする。
- 次に選択された弧をa とする。
 - \triangleright $a \in A \setminus T$
- ullet |T|+1本の弧を持ちサーキットを有さない弧集合のうちで重みが最小のものをS とする。
 - \blacktriangleright w(S) = w(T) + w(a)ならば性質(*)が成り立つ
 - > w(S) < w(T) + w(a) は矛盾する(起こりえないことを示す)

証明:準備

- Tは | T | 本の弧を持つサーキット(閉路)の無い弧集合の内で、重みが最小である。
 - 従って、Sから任意の弧bを取り除いた弧集合(|T|本の弧)の重みはTの重みより小さいことはない。

$$\forall b \in S, w(S \setminus \{b\}) = w(S) - w(b) \ge w(T)$$

 \circ このことから、Sに含まれる任意の弧bとTにこれから追加する弧aの重みの大小関係がわかる。

$$w(S) < w(T) + w(a) \le w(S) - w(b) + w(a)$$

$$\downarrow \downarrow$$

$$w(b) < w(a)$$

証明:矛盾の導出

- \circ S $\geq T$ はサーキットを含まず $\mid S \mid = \mid T \mid +1$
- o ある $a' \in S \setminus T$ に対して $T \cup \{a\}$ はサーキットを含まないとする。
 - aなSの弧であることから、w(a') < w(a)
 - なぜなら、Tは(*)を満たすから
 - これより

$$w(T \cup \{a'\}) = w(T) + w(a') < w(T) + w(a)$$

- ○これはaの選び方に反する。
- \circ よって矛盾する。つまり、そのようなSは存在せず、手続きに従って構成した $T \cup \{a\}$ は、最小木である。

注意

- ある弧を選択した際に、それが閉路を作らないことの確認が必要
 - 加えようとして孤aの両端の頂点(v,w)
 - T内にvからwへの道があるかを調べる
- 深さ優先、幅優先の探索アルゴリズムが必要

最大補木を求める方法

 \circ 最小木を求めるために、重み最大の補木 $A \setminus T$ を求め

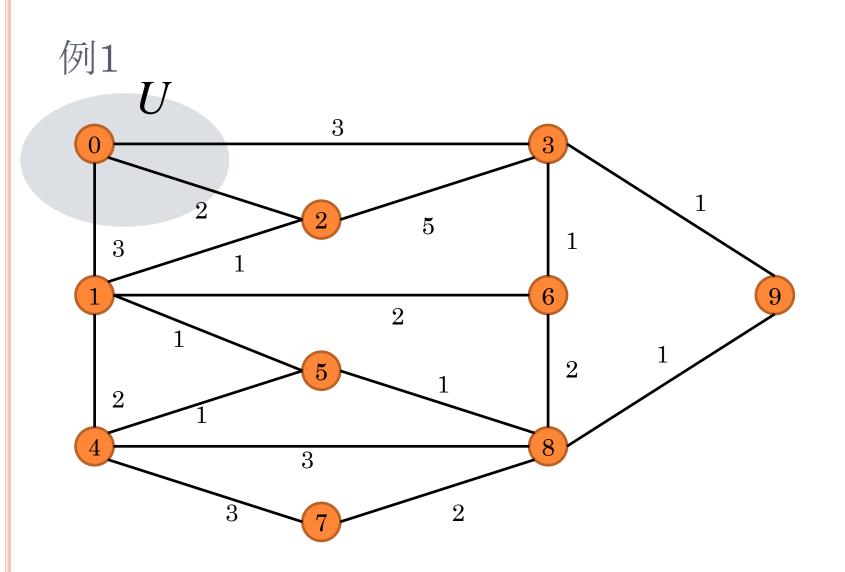
```
T \leftarrow A
w_{\text{max}} = 0
While (T はG の極大木ではない ) {
             for all (a \in T)
                          if (T \setminus \{a\} \mid G \cap \Phi大木を含む) \{
                                        if (w(a) > w_{\text{max}})
                                                      a_{\text{selected}} = a
                                                      w_{\text{max}} = w(a)
             T \leftarrow T \setminus \{a_{\text{selected}}\}
```

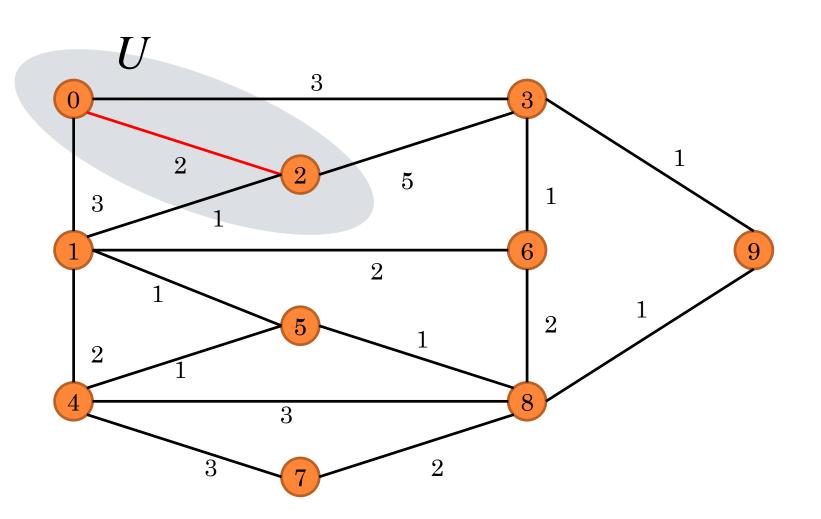
JARNÍK-PRIM法

- ○始点から開始して、連結した頂点の数を増やす
- ○構成途中でも木になっている
- ○途中の木から、未連結の頂点への弧のうちから、最小の弧を選んで、枝を伸ばす

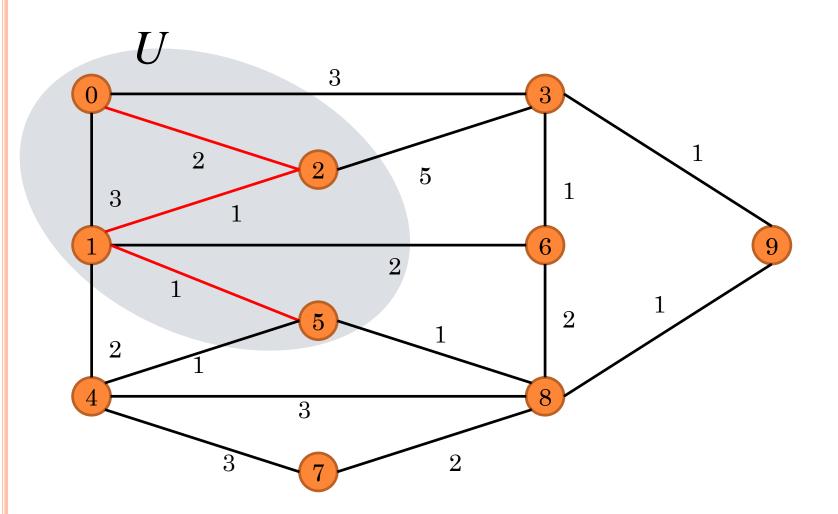
JARNÍK-PRIMアルゴリズム

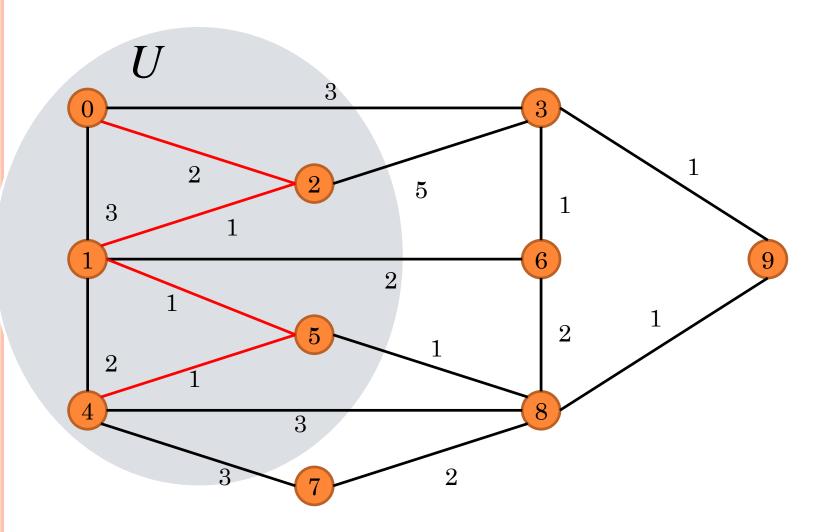
```
任意の頂点v \in V を選び、U = \{v\}、T = \emptyset とする While (U \neq V) U と V \setminus U を結ぶ弧のうち最小の重みのものを a とする a の V \setminus U 側の端点を w とする U \leftarrow U \cup \{w\} T \leftarrow T \cup \{a\}
```

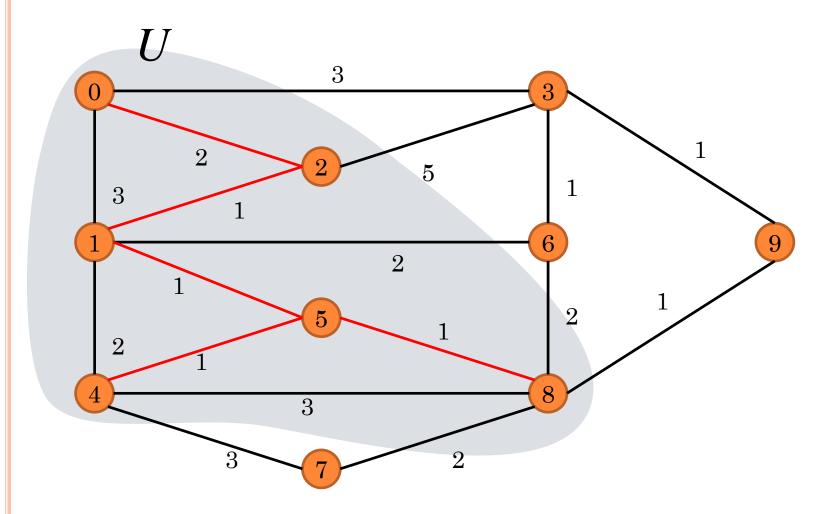


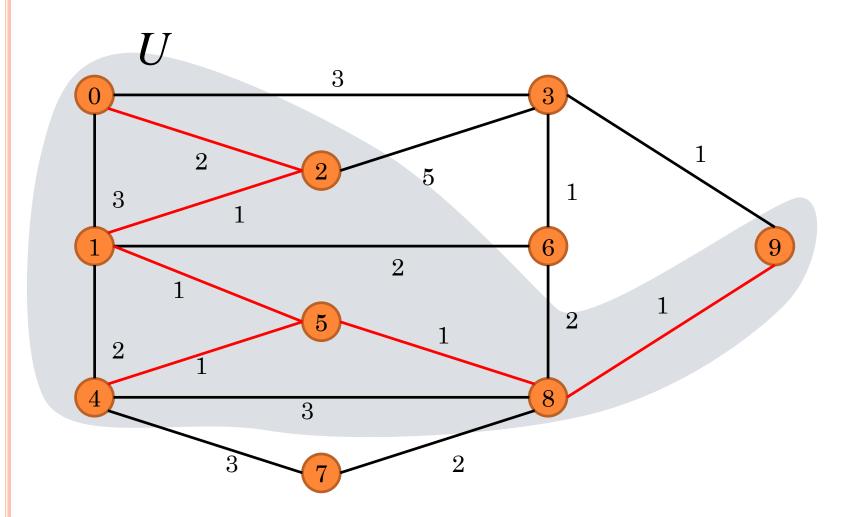


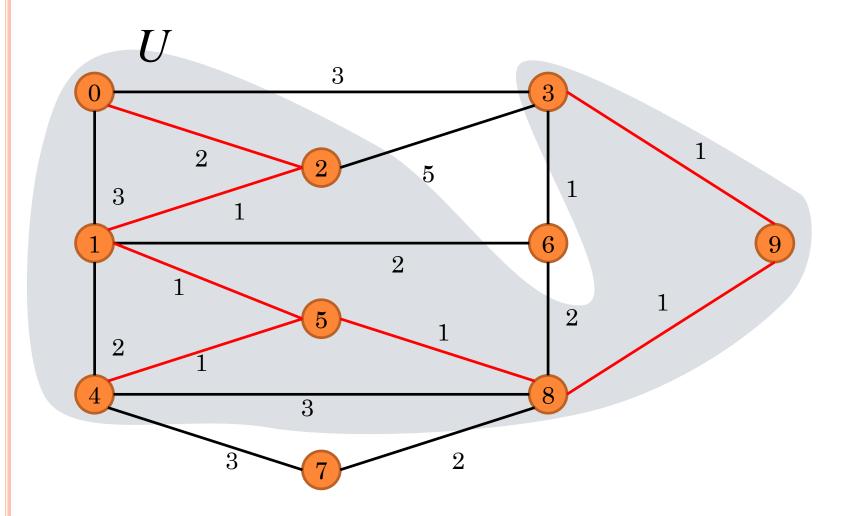


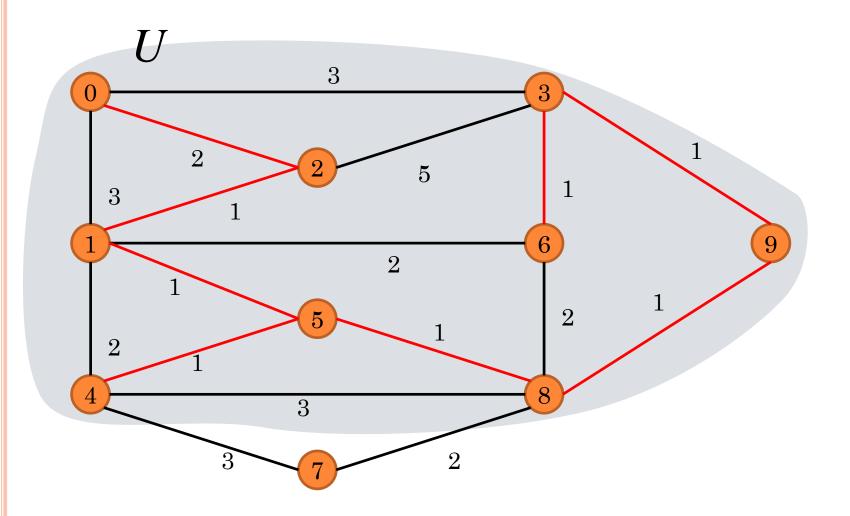




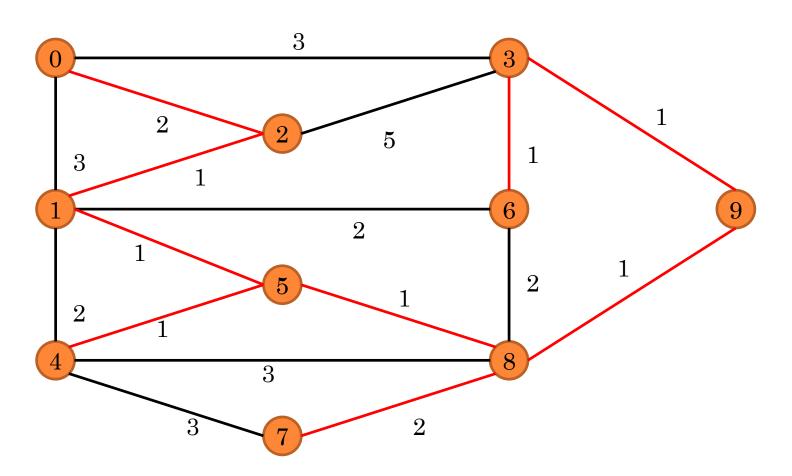


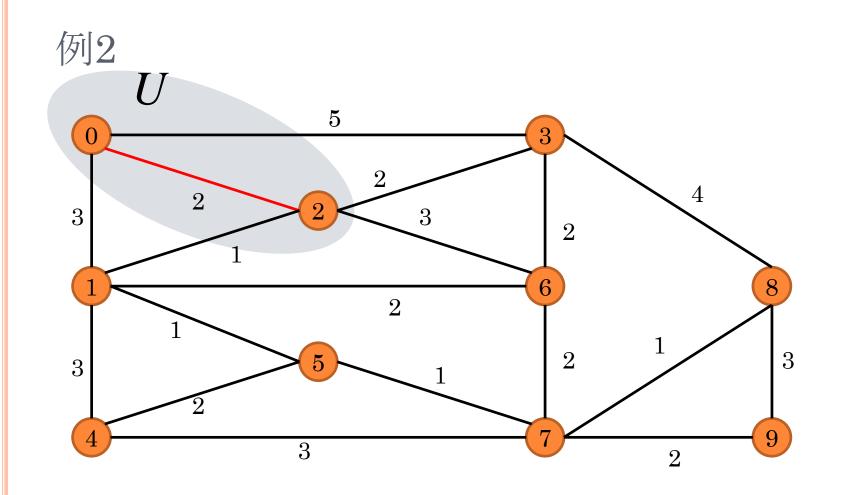


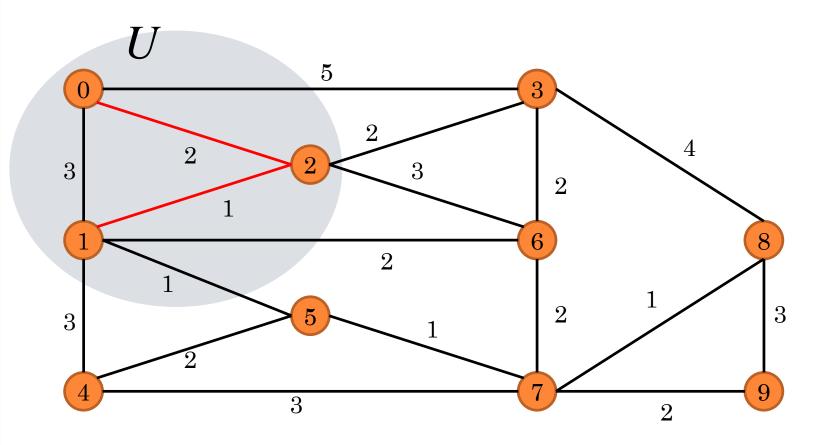


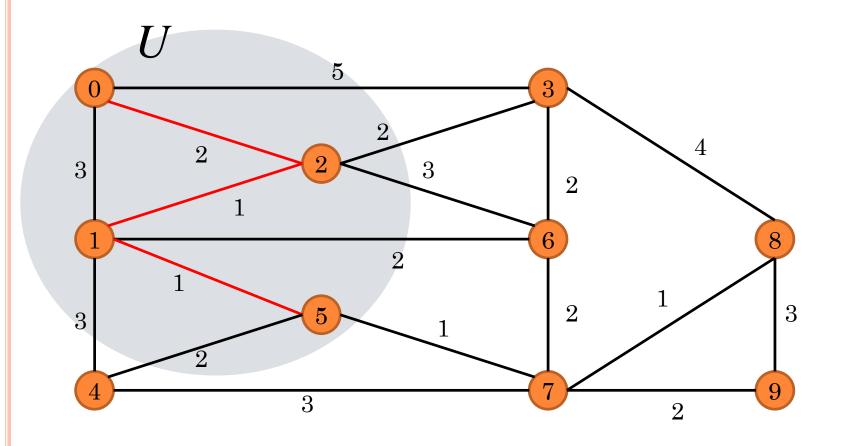


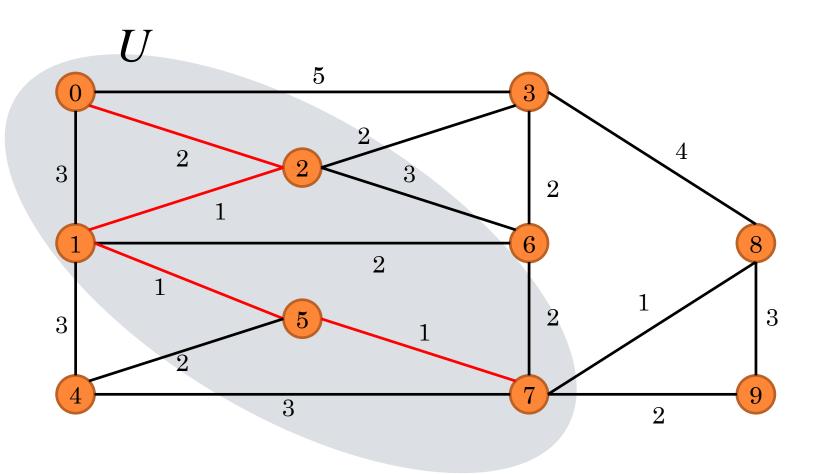
例1:最小木

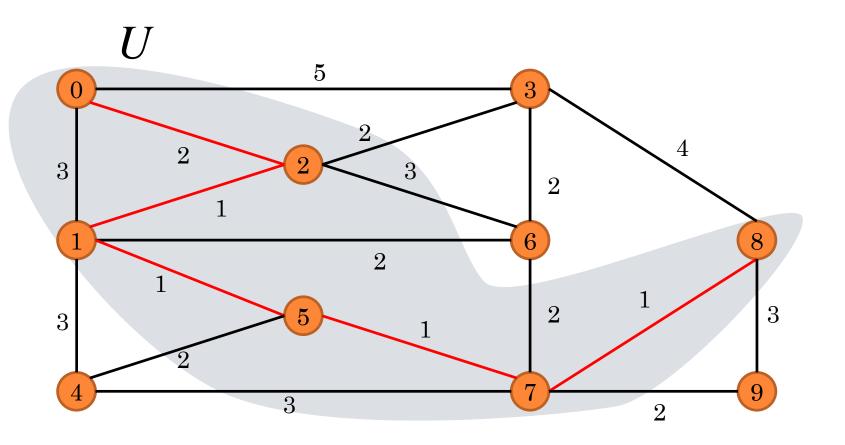


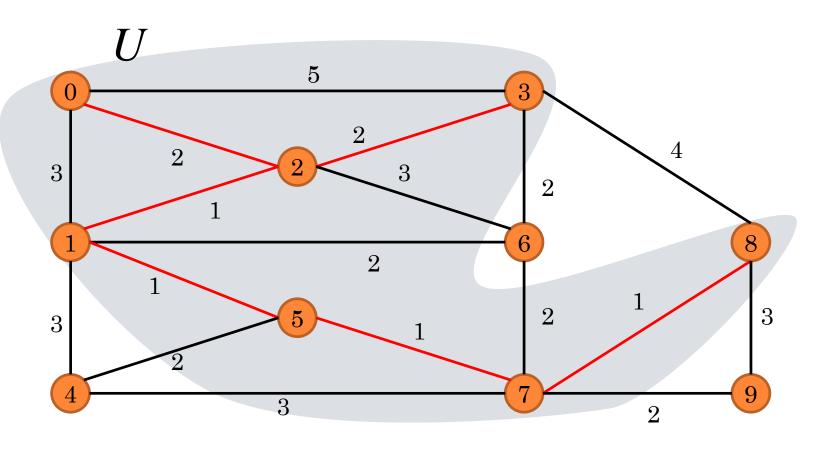


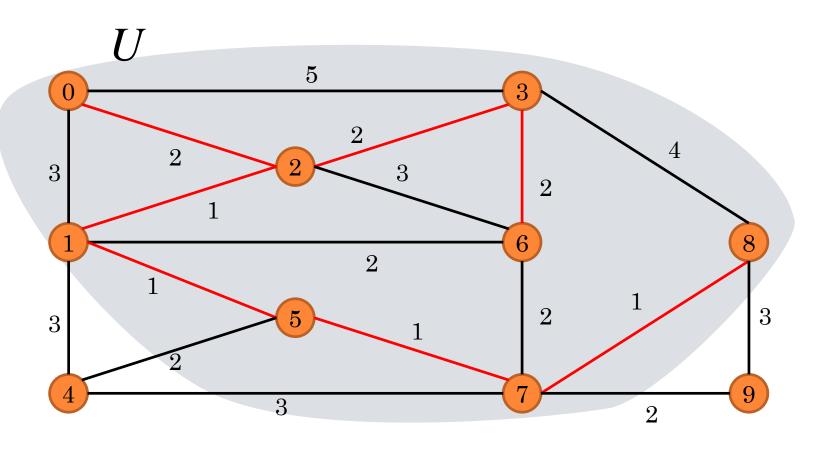


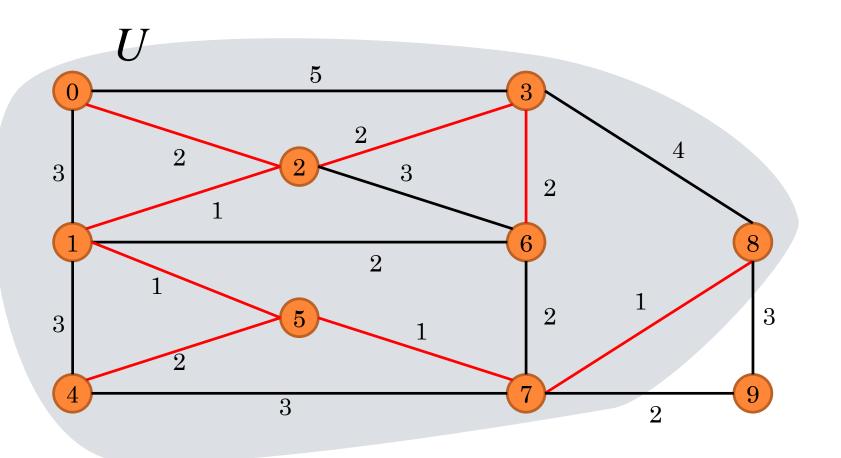


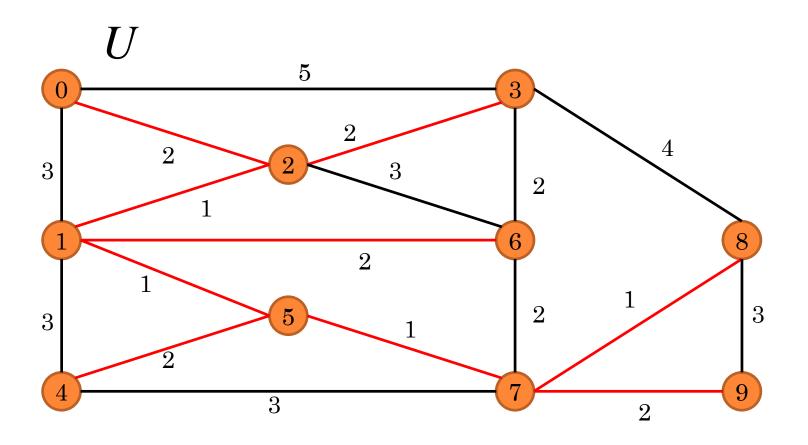










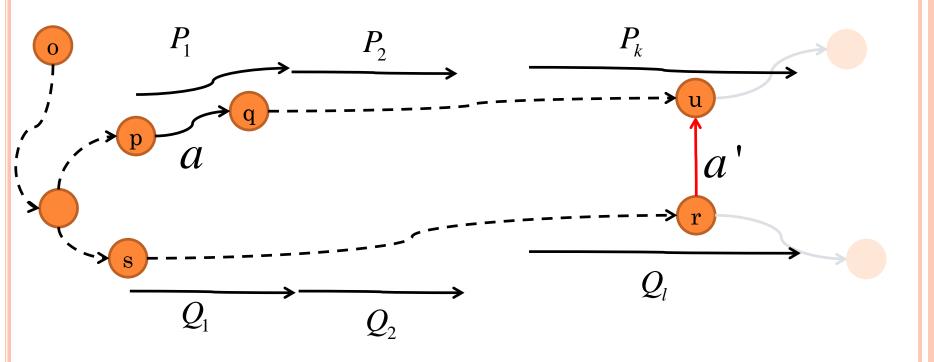


JARNÍK-PRIMアルゴリズムが正しいこと

• Jarník-Primアルゴリズム実行中の木Tは、Uによって誘導されるGの部分グラフG(U)における最小木になっている。

• 証明

• T のある枝a をT に含まれない枝a' に置き換えることで、より小さい木ができる (w(a') < w(a)) ことを仮定して、矛盾を導く。



- \bullet Oを根とする木Tにおいて、弧aの代わりに弧a'としたほうが、 重みが小さくなると仮定する。
- 上の枝で、弧aを先頭に連続して伸びた道を P_1 とし、その後、下の枝で連続して伸びた道を Q_1 とする。その後、 P_2 、 Q_2 と交互に伸びるとする。他の枝は無視する。
- ullet \mathbf{u}_{a} の両端の頂点は道 P_{k} 及び Q_{l} に属しているとする。

 P_i を構成する弧を $\left\{a^i_{\ 0}, a^i_{\ 1}, \cdots, a^i_{\ n(i)}\right\}$ 、 Q_i を構成する弧を $\left\{b^i_{\ 0}, b^i_{\ 1}, \cdots, b^i_{\ n(i)}\right\}$ とする。 P_i の後 Q_i が伸びることから

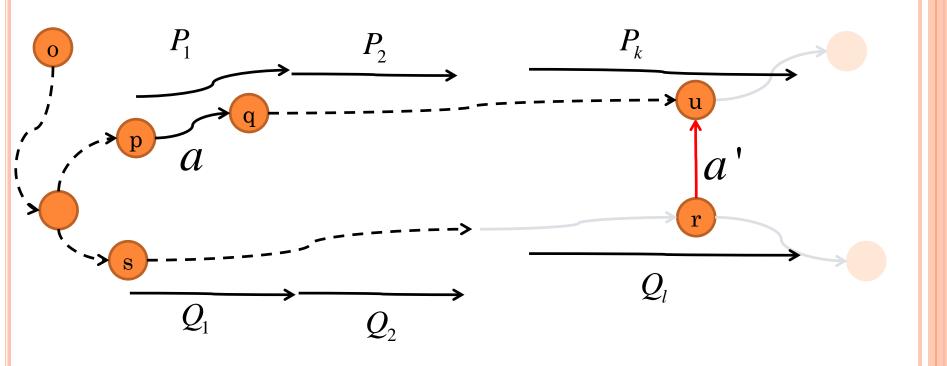
$$\forall i, \forall j, w(a_j^i) \leq w(b_0^i), w(b_j^i) \leq w(a_0^{i+1})$$

先頭の弧に注目すると、以下が成り立つ

$$\forall i, w(a_0^i) \leq w(b_0^i) \leq w(a_0^{i+1})$$

つまり、各道の先頭の弧の重みは以下を満たす。

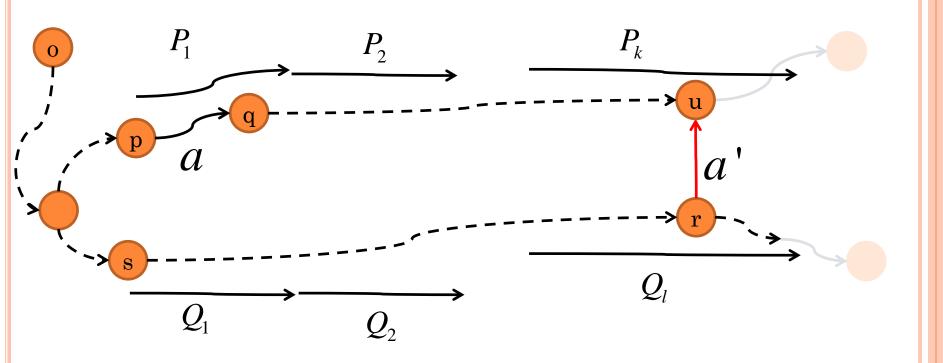
$$\forall i, w(a) \leq w(a_0^i), w(a) \leq w(b_0^i)$$



 $k \leq l$ の場合、つまり上の枝が頂点u まで伸びたとき、下の枝は未だ頂点r に伸びていない場合を考える。このとき、上の道 P_k が伸びるときに、枝a' がアルゴリズムによって採用されなかったことから

$$w(a) \le w(b^k_0) \le w(a')$$

となり矛盾する。



逆のk>lの場合、つまり上の枝が頂点uまで伸びたとき、下の枝は頂点rを過ぎて伸びていた場合を考える。下の道 Q_l が伸びるときに、枝a'がアルゴリズムによって採用されなかったことから

$$w(a) \le w(a^k_0) \le w(a')$$

となり矛盾する。