
Object Oriented Programming

2022 final report

Deadline:2022/8/2 20:00

1 Tower of Hanoi

Tower of Hanoi is a simple game (see Fig. 1). There are three pillars and some
disks with difference radius. You are allowed move disks one by one. And
you are allowed to put a disk into a pillar if the top disk of the destination
pillar is larger than the disk you want to put or the destination pillar has no
disk. Initially some disks are put in the leftmost pillar. The task is to move
all disks to the rightmost pillar.

Fig. 1: Tower of Hanoi with 4 disks

The algorithm for solving the task is recursively described. For moving n
disks from a pillar f to another t, you move n−1 disks from a pillar f to the
remaining pillar o, move one disk from f to t, and finally move n − 1 disks
from o to t. The procedure which actually move a disk is restricted for the
n = 1 case.

The algorithm is shown in Algorithm 1. For a game with n disks, the
game starts with calling moveDisk(0, 2, n), where the leftmost and the
rightmost pillars are indexed as 0 and 2.

1



Algorithm 1 Move disks

procedure moveDisks(f, t, n)
if n = 1 then

Move one disk from f to t
return

end if
o is a pillar o! = f and o! = t
moveDisks(f, o, n− 1)
Move one disk from f to t
moveDisks(o, t, n− 1)

end procedure

2 Class Planning

Let us start to plan classes for solving Tower of Hanoi. The game needs to
control motions of disks between pillars. The Disk class is for disks with
different radius. The Pillar class is for pillars, which have a stack of disks.
The Pillar class needs to prevent a larger disk from being put above a
smaller one. The main class, Hanoi, has three pillars.

The template for this project can be get through the following URL.
https://github.com/oop-mc-saga/Hanoi

2.1 Disk class

The Disk class in parts package simply keeps the radius of a disk. The class
implements Comparable interface.

Exercise 2.1 Complete the method compareTo().

Exercise 2.2 All classes in Java are extension of Object class. The Object
class has toString() method, so all classes have. Explain the purpose of
this method. And define the function for the case of Disk class.

2



2.2 Pillar class

The Pillar class in parts package stores disks in a stack. The java.util

package has Stack class. However, the API reference recommends to user
Deque interface and its implementations instead. The Pillar class uses
Deque for storing disks.

Exercise 2.3 Read the API reference, and explain the following methods
of Deque interface.

• isEmpty()

• addFirst()

• removeFirst()

• getFirst()

Exercise 2.4 The canPush() method investigates whether the disk spec-
ified as an argument can be put to this pillar. If the pillar is not empty,
you have to decide true or false by investigating the size of the top disk.
Implement the canPush() method.

2.3 Hanoi class

The Hanoi class is contained in model package. This class is the main part of
Tower of Hanoi. The class has an array of three Pillar instances constructed
in the Constructor. The pillars are indexed as 0, 1, and 2 from the leftmost
to the rightmost. The number of disks are passed through the Constructor
and Disk instances are placed in the leftmost pillar.

By calling start() method, the task is started by calling moveDisk()

method.

Exercise 2.5 In this game, you are allowed to move disks one by one. So
we implement moveSingleDisk() method for moving only one disk from f
to t, where f and t are indexes of the pillar array.

3



Exercise 2.6 The Hanoi class has a boolean variable debug. If true,
the class prints the current state to the standard output at every time call-
ing the moveSingleDisk() method. Add this function (print state) in the
moveSingleDisk() method.

Exercise 2.7 Implement the moveDisks() method according to Algo-
rithm 1.

3 Running the project

The Main class in default package has main() method only and is used for
running the Hanoi class.

Exercise 3.1 Implement main() method for cases with n = 3 and n = 4.
And confirm that the task is correctly completed.

4 Theoretical Analysis

Let us discuss the number of disk motions necessary for completing the task.

Exercise 4.1 Let Cn be the number of disk motions necessary for moving
n disks from one pillar to another. Derive the recursive relation for Cn based
on the Algorithm 1. And show Cn as a function of n by solving the recursive
relation.

Exercise 4.2 The Hanoi class has a variable numberOfMove. Modify
moveSingleDisk() method for incrementing numberOfMove. And confirm
the theoretical result with the value of numberOfMove.

4



5 How to submit your report

Your report should be prepared as a PDF file and submitted through Teams.

• Prepare your report digitally with such as Word or LATEX.

• The file name should be studentID.pdf.

• Contain description of understanding and solutions of tasks, programs,
and program outputs.

• Show multiple examples.

• Improve your program’s readability with suitable naming of classes,
variables, and methods. Also add suitable comments in programs.

• Write your document neatly with correct Japanese or English.

• Cite suitable references.

6 Scoring

C: Requested programs are coded, but not explained or not suitably con-
structed as OOP.

B: Classes are correctly defined and codes are well organized.

A: Class planning and workflows are well discussed in the report.

S: Over the level A, some notable points are found.

5


